
XP Values & Principles

http://matthewlmcclure.com/ Page 1 http://matthewlmcclure.com/s/2014/01/16/extreme-programming-quick-reference.html

Va
lu

es Communication Simplicity Feedback Courage Respect

Pr
in

ci
pl

es Humanity Economics Mutual Benefit Self-Similarity Improvement Diversity

Reflection Flow Opportunity Redundancy Failure Quality

Baby Steps Accepted Responsibility

Facilitate communication 
between people who know 
solutions and people who have 
the power to make changes.
When you encounter a problem, 
ask if it was caused by lack of 
communication. If so, improve 
communication accordingly.

What is the simplest solution that 
could possibly work? Avoid 
oversimplification! Avoid 
overcomplication!
Simplicity is in the eye of the 
beholder. Respect the needs of 
users, designers, code authors, 
code readers, et. al.

No fixed direction remains valid 
for long. Use feedback to change 
direction accordingly.
Generate as much feedback as 
you can handle as quickly as 
possible. Adapt accordingly to 
important feedback. Ignoring 
important feedback is a sign that 
you need to slow down.
Feedback should contribute to 
Communication and Simplicity.

Courage is effective action in the 
face of circumstances that make 
such action difficult.
Challenge the status quo while 
maintaining respect of the other 
values.

Care about your team, your 
users, and your project. Act in 
ways that demonstrate that care.

Recognize that software is written 
by people with human needs 
including basic safety, 
accomplishment, belonging, 
growth, and understanding other 
people.

Somebody is paying for all of this. 
Understand the time value of 
money -- a dollar today is worth 
more than a dollar tomorrow --> 
other things being equal, 
releasing today is worth more 
than releasing tomorrow. 
Understand the option value of 
the team and the system -- our 
ability to adapt ourselves and the 
system over time allows us to 
make money in ways we didn't 
necessarily imagine at the start.

The most important XP principle. 
Choose actions that benefit all 
involved instead of actions that 
impose a cost on one for the 
benefit of another. Avoid net 
losses by solving more problems 
than you create.

Re-use the structure of good 
solutions in different contexts at 
different scales. The solution 
won't always be a good fit in a 
different context, but trying 
something known to work in the 
past is often a good start.

Do the best you can today, 
striving for the awareness and 
understanding necessary to do 
better tomorrow. Perfect the 
process over time; don't wait for 
perfection in order to begin. 
Gradually eliminate waste.

Diverse ideas present 
opportunities. Embrace conflicting 
ideas and resolve disagreement 
productively.

Think about how and why you are 
working. Expose your mistakes 
and learn from them. Pay 
attention to your emotions as well 
as intellectual analysis; emotions 
are often strong indicators of how 
well you are working. Reflect after 
doing to avoid overdoing 
reflection.

Maintain a continuous flow of 
software delivery. Release 
smaller increments ever more 
frequently. Any time you move 
away from flow, resolve to return. 
Identify and address the 
problems that disrupted your flow.

Learn to see problems as 
opportunities for change. Move 
beyond an attitude of "survival" by 
learning and improving in the face 
of challenges.

The critical, difficult problems in 
software development should be 
solved several different ways. 
Even if one solution fails utterly, 
the other solutions will prevent 
disaster.
For example, Defects corrode 
trust and trust is the great waste 
eliminator. XP addresses defects 
with many practices, including 
pair programming, continuous 
integration, sitting together, and 
daily deployment.
Eliminate redundancy that once 
served a valid purpose only when 
it is proven redundant in practice. 
For example, eliminate post-
development testing only when 
you do not find any defects 
several deployments in a row.

If you're having trouble 
succeeding, take action and fail. 
Failure is valuable as long as it 
imparts knowledge. When you 
don't know what to do, risking 
failure can be the shortest, surest 
road to success. (Don't use this to 
excuse failure when you really 
knew better.)

Projects do not go faster by 
accepting lower quality. Likewise, 
they don't go slower by 
demanding higher quality. 
Iteratively improving quality can 
lead to faster, more predictable 
delivery.
Control projects by adapting 
scope as necessary to meet fixed 
deadlines with fixed costs.

What is the least you could do 
that is recognizably in the right 
direction? Take many small steps 
rapidly to avoid stasis or glacial 
change. Momentous change 
taken all at once is dangerous.

Accept responsibility for the task 
at hand. With your acceptance of 
responsibility, comes the authority 
to decide how best to reach 
resolution. Maintain alignment of 
responsibility and authority.



XP Primary Practices

http://matthewlmcclure.com/ Page 2 http://matthewlmcclure.com/s/2014/01/16/extreme-programming-quick-reference.html

Pr
im

ar
y 

Pr
ac

tic
es Sit Together Whole Team Informative Workspace Energized Work Pair Programming

Stories Weekly Cycle Quarterly Cycle Slack Ten-Minute Build

Continuous Integration Test-First Programming Incremental Design

Sit together with your team whenever 
possible. The more face time you have 
the more humane and productive the 
project. Sitting together encourages 
communication with all your senses. 
Working together encourages 
opportunistic productive conversation 
and reduce unproductive scheduled 
meetings.
(Problems observed are always people 
problems. Technical fixes are not 
enough. Address root people problems 
that lead to technical problems.)

Include all skills on the cross-functional 
team that are required for the project. 
Identify primarily with the team instead 
of with your function. Identify with one 
team. For large projects, decompose 
the problem so that it can be addressed 
by a team of teams.

An interested observer should be able 
to get a general sense of how the 
project is going by looking around the 
workspace for 15 seconds. Post project 
artifacts that benefit the team. If a 
visible artifact stops getting updated or 
becomes irrelevant, take it down.

Work as much time as you can sustain 
productively. Creativity comes from a 
prepared, rested, relaxed mind. It's 
easy to remove value from a project, 
and when you're tired it's hard to 
recognize that you're removing value. 
Instead of working longer hours, 
manage the existing time more 
effectively.

Write programs with two people sitting 
at one machine. Keep each other on 
task. Brainstorm refinements. Clarify 
ideas. Take initiative when your partner 
is stuck. Hold each other accountable to 
the team's practices. Take breaks when 
you need to work on an idea alone.

Plan using units of customer-visible 
functionality. As soon as a story is 
written try to estimate the development 
effort necessary to implement it. 
Estimation gives the business and 
technical perspectives a chance to 
interact. Split, combine, or extend 
scope based on what you know about 
features' estimated value and effort. 
Identify how to get the greatest return 
from the smallest investment.

Plan work a week at a time. At the 
beginning of the week, review progress 
to date, including how actual progress 
matched expected progress; ask your 
customers -- or suitable representative 
of the customer -- to pick a week's 
worth of stories; break the stories into 
tasks. Team members accept 
responsibility for the tasks and estimate 
them.
Planning is a necessary form of waste. 
Work on gradually reducing the 
percentage of time you spend planning.

Plan work a quarter at a time. At the 
end of a quarter, reflect on the team, 
the project, its progress, and its 
alignment with larger goals. Identify 
bottlenecks, initiate repairs, plan the 
themes for the quarter, Pick a quarter's 
worth of stories to address those 
themes, and focus on the big picture 
where the project fits within the 
organization.

In any plan, allow for time to 
compensate if you get behind. 
Approaches to do so include planning 
some optional tasks that you could 
drop, one week in eight could be "Geek 
Week", 20% of the weekly budget could 
be used for programmer-chosen tasks.
Begin slack with yourself by telling 
yourself how long you actually think a 
task will take and giving yourself time to 
do it.

Automatically build the whole system 
and run all of the tests in ten minutes. 
Any guess about what parts of the 
system need to be built and tested 
introduces the risk of error.

Integrate and test changes after no 
more than a couple of hours. Integration 
is unpredictable and can take more time 
than programming. The longer you wait 
to integrate the more it costs and the 
more unpredictable the cost becomes.
Integrate and build a complete product. 
Continuous integration should be 
complete enough that production 
deployment of the system is no big 
deal.

Start a week by writing failing 
automated system tests for each story 
that will pass when the story is 
complete. Spend the rest of the week 
completing the stories by getting the 
tests to pass. As you work on a story, 
write an automated unit test just before 
each code change you will make. Test-
first programming addresses scope 
creep, coupling and cohesion, trust, and 
rhythm.

Invest in the design of the system every 
day. Strive to make the design of the 
system an excellent fit for the needs of 
the system that day.
While studies have shown that the cost 
of fixing defects increases over time, it 
is a fallacious conclusion that the cost 
of all changes increases over time. 
Maintain conditions that support your 
ability to change the system over time.
Align design investment with the needs 
of the system so far. The most effective 
time to design is in the light of 
experience. Design in advance of 
experience when necessary, while 
deferring design until the last 
responsible moment.
Eliminate duplication as a guide for 
where within the system to design.



XP Corollary Practices

http://matthewlmcclure.com/ Page 3 http://matthewlmcclure.com/s/2014/01/16/extreme-programming-quick-reference.html

C
or

ol
la

ry
 P

ra
ct

ic
es Real Customer Involvement Incremental Deployment Team Continuity Shrinking Teams Root-Cause Analysis

Shared Code Code and Tests Single Code Base Daily Deployment

Negotiated Scope Contract Pay-Per-Use

Make people whose lives and business 
are affected by your system part of the 
team. Visionary custoemrs can be part 
of quarterly and weekly planning.

When changing an existing system, 
gradually adapt its production behavior 
beginning very early in the project. Find 
a little piece of functionality or a limited 
data set you can handle right away. 
Deploy it.

Keep effective teams together. People 
create value not just by what individuals 
know, but also by what they accomplish 
together. Ignoring the value of 
relationships and trust to simplify a 
scheduling problem is false economy.
Mix in new members while mostly 
keeping teams together to get the 
benefits of both stable teams and 
consistently spread knowledge and 
experience.

As a team grows in capability, keep its 
workload constant and gradually reduce 
its size. When the team has too few 
members, merge it with another too-
small team.

Every time a defect is found after 
deployment, eliminate the symptom and 
its cause. Never make the same kind of 
mistake again. (1) Write an automated 
system test that demonstrates the 
defect by expecting the absent desired 
behavior. (2) Write a unit test with the 
smallest possible scope that also 
reproduces the defect. (3) Fix the 
system so the unit test works. This 
should cause the system test to pass 
also. If not, return to (2). (4) Figure out 
why the defect was created and wasn't 
caught. Initiate the necessary changes 
to prevent this kind of defect in the 
future. Use Five Whys to accomplish 
(4).

Anyone on the team can improve any 
part of the system at any time. If 
something is wrong with the system and 
fixing it is not out of scope for what 
you're doing right now, fix it. Until the 
team develops a sense of collective 
responsibility no one is responsible and 
quality deteriorates.

Maintain only the code and the tests as 
permanent artifacts. Generate other 
documents from the code and tests. 
Rely on social mechanisms to keep 
alive important history of the project.

Maintain only one code stream. 
Develop in a temporary branch but 
never let it live longer than a few hours. 
Many rationalizations of multiple code 
streams are micro-optimizations that 
ignore macro-consequences.

Put new software into production every 
night. Any gap between what is on a 
programmer's desk and what is in 
production is a risk and a waste.

Write contracts for software 
development that fix time, costs, and 
quality, and call for an ongoing 
negotiation of the precise scope of the 
system. Reduce risk by signing a 
sequence of short contracts instead of 
one long one.

Charge for the time the system is used. 
Money is the ultimate feedback. 
Connecting money flow directly to 
software development provides 
accurate information with which to drive 
development.
Pay-per-release opposes the supplier's 
and the customer's interests. The 
supplier is selfishly motivated to provide 
many releases. The customer wants 
fewer releases because of the pain of 
upgrading.


